Learning to Extract Geographic Information from Internet Router

Hostnames

Matthew Luckie Bradley Huffaker Alexander Marder

University of Waikato CAIDA, UC San Diego CAIDA, UC San Diego
mjl@wand.net.nz bradley@caida.org amarder@caida.org

Zachary Bischof Marianne Fletcher k claffy

CAIDA, UC San Diego University of Waikato CAIDA, UC San Diego
z@chary.io mfletche@wand.net.nz kc@caida.org
ABSTRACT T T T T TS Tss—mm oo mm— =

Geolocating Internet routers is a long-standing and notoriously
difficult challenge, and current solutions lack the accuracy and
adaptability to yield reliable results. We revisit this problem, design-
ing a solution capable of accurately and comprehensively extracting
geographic information that network operators embed into router
interface hostnames. We train our system using dictionaries that
map geographic codes to known locations, and constrain inferences
with delay measurements conducted from a distributed set of van-
tage points. While most operators use known geographic codes,
some devise their own mnemonic codes for locations, which our
system also extracts and interprets.

We evaluate our system on Internet-wide topology datasets, au-
tomatically learning regular expressions (regexes) for 1023 different
domain suffixes with IPv4 routers, and 241 different domain suf-
fixes with IPv6 routers. We received ground truth from operators
of 13 domain suffixes, all of whom confirmed the correctness of our
learned regexes, and that our system correctly interpreted 78.6%
of the custom geographic codes. For these 13 suffixes, our solution
more accurately extracts and interprets geographic information
than the previous state-of-the-art, correctly geolocating 94.0% of
router hostnames with a geohint compared to DRoP (56.6%) and
HLOC (73.1%). This work advances the ability of researchers and
network operators to characterize the location of critical Internet
infrastructure, a foundational building block of network perfor-
mance, security, and resilience analysis. We release the source code
of our system and our inferred regexes.

ACM Reference Format:

Matthew Luckie, Bradley Huffaker, Alexander Marder, Zachary Bischof,
Marianne Fletcher, and k claffy. 2021. Learning to Extract Geographic Infor-
mation from Internet Router Hostnames. In The 17th International Confer-
ence on emerging Networking EXperiments and Technologies (CONEXT °21),
December 7-10, 2021, Virtual Event, Germany. ACM, New York, NY, USA,
14 pages. https://doi.org/10.1145/3485983.3494869

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CoNEXT °21, December 7-10, 2021, Virtual Event, Germany

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-9098-9/21/12...$15.00
https://doi.org/10.1145/3485983.3494869

440

: xo0.iad02.atlas.cogentco.com !
| as2828.was14.ip4.gtt.net |
\

Router #1
_ _ _ _19-2:0d0.cirt.ashburn-va.us.xo.net
P
| vodafone.iad02.atlas.cogentco.com !

Router #2 | ae-0.vodafone.asbnva02.us.bb.gin.ntt.net |
'\ zayo.vodafone.er2.iad10.us.zip.zayo.com
-z z
| usqas1-rt002i.i3d.net :

Router #3 | interactive.edgel.washington111.level3.net |
|

ce-0-4-0-2.r05.asbnva02.us.ce.gin.ntt.net

- e - - e - e = - = = = ——

| level3-as3356.e0-51.switch2.ash1.he.net !
Router #4 | ae-1-3510.edgel.washingtoni11.level3.net |
level3.ashburn2.ash.seabone.net |
Figure 1: Fundamental challenge of inferring router geolo-
cation from hostnames: undocumented, inconsistent, and
colliding use of various dictionaries. Routers may have
hostnames with an IATA code (“iad”, “was”), CLLI prefix
(“asbnva”), LOCODE (“usqas”), or a city name (“ashburn”,
“washington”). Some operators also encode country (“us”) and
state (“va”). However, “ash” (router #4) is an IATA code for
Nashua, NH, US that the operators of he.net and seabone.net
used to label routers in Ashburn, VA, US.

1 INTRODUCTION

Identifying the physical location of Internet routers is critical for
assessing the resilience of network infrastructure to natural disas-
ters [41], the optimality of forwarding paths [19, 34], and the degree
to which communications transit a country that performs censor-
ship or surveillance [22]. The process of identifying the physical
location of an Internet Protocol (IP) address, geolocation, is well-
studied, both in academia and industry. Commercial geolocation
databases are well-suited to identifying the physical location of end-
host IP addresses, as there are a myriad of commercial applications
that support those efforts, such as location-based advertising and
digital rights management. However, these commercial databases
cannot accurately geolocate Internet routers [15].

Some network operators encode the physical location of a router
in Domain Name System (DNS) hostname strings because it helps
them and other network operators understand and diagnose In-
ternet performance problems [50]. Figure 1 provides examples of
routers with geographic hints (geohints) embedded in hostnames
that place the routers in Ashburn, VA, US. The operators use dif-
ferent conventions: gtt.net and zayo.com embed International Air

https://doi.org/10.1145/3485983.3494869
https://doi.org/10.1145/3485983.3494869
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current

CoNEXT 21, December 7-10, 2021, Virtual Event, Germany

Transport Association (IATA) airport codes, ntt.net embeds Com-
mon Language Location Identifier (CLLI) prefixes, i3d.net embeds
United Nations Code for Trade and Transport Locations (UN/LO-
CODEs), and level3.net embeds city names; ntt.net, zayo.com, and
xo.net embed country codes, while xo.net also embeds state codes.

Beyond the different types of geohints, each operator indepen-
dently decides where in the hostname they place the geohint, as
well as any other information to embed in the hostname. The re-
sulting diversity in conventions makes it difficult for researchers
and network operators to reason about the physical location of In-
ternet routers. A further challenge is operators that usually follow
a convention, such as the IATA airport codes, but deviate from the
defined codes with custom geohints.

Geolocation is so fundamental to analysis of networks, that re-
searchers have spent two decades developing geolocation methods.
We review the literature in §3, but four studies illustrate the depth
and importance of the problem. In 2002, Spring et al. developed
and released Rocketfuel [49], which included the undns tool and
a manually-assembled database of regular expressions (regexes)
that extracted geohints, among other information, from hostnames.
Dozens of subsequent studies (§3.2) relied on this database to eval-
uate the performance, security, and robustness of networks, but its
manual construction was unsustainable; its regexes have not been
updated since 2014. In 2004, Gueye et al. published CBG, which
builds distance constraints using delay measurements from van-
tage points with known locations to infer the approximate location
of a system through multilateration on constraints. However, re-
searchers have limited access to densely deployed measurement
infrastructures that allow for Internet-scale geolocation. In 2014,
Huffaker et al. published DRoP to automate learning geolocation
regexes [20] using previously gathered delay measurements to con-
strain inference, but their design tradeoffs limited its scope and
accuracy [6, 10, 46]. In 2017, Scheitle et al. published HLOC, which
evaluated router hostnames for possible geohints using delay mea-
surements collected at run-time, without using regexes [46]; their
method relies on a dictionary of geohints and does not correctly
interpret hostnames when operators use custom geohints.

In this paper, we take a fresh look at router geolocation, com-
bining recent developments in learning other features in host-
names [30, 32] with delay measurements to automatically extract
and interpret geohints embedded into hostnames using regexes.
Using regexes to learn the structure of geohints in hostnames has at
least three advantages over interpreting hostnames with delay mea-
surements at run-time. First, regexes are available for others to use,
who may not have access to a measurement infrastructure. Second,
when an operator uses custom geohints, the string extracted by the
regex is likely a geohint, providing a basis to infer a geolocation
mapping for that string. Third, regexes can geolocate routers that
do not respond to delay measurements if the network provides
hostnames for those routers, and other routers that do respond to
delay measurements. We make the following four contributions:

We design and implement a method that automatically
learns regexes that extract geohints from hostnames. Our
method, informed by a dictionary of airport codes, city names,
LOCODEs, CLLI prefixes, facilities, and state and country codes,
automatically learns regexes that extract these hints from host-
names. We assembled four sets of training data — IPv4 router-level

441

Matthew Luckie, Bradley Huffaker, Alexander Marder, Zachary Bischof, Marianne Fletcher, and k claffy

topologies for August 2020 and March 2021, and IPv6 router-level
topologies for November 2020 and March 2021. For the August
2020 IPv4 training data, 8.8% of 2.56M routers had hostnames with
apparent geohints; our method learned 461 regexes that extracted
IATA codes, 96 regexes that extracted CLLI prefixes, 372 regexes
that extracted city names, and 10 regexes that extracted LOCODE:s,
covering 86.8% of these routers.

We design and implement a method that automatically
learns when an operator deviates from geohint dictionaries.
Our method learns three-letter codes that override the IATA dic-
tionary (e.g., “ash” for “Ashburn, VA” instead of “Nashua, NH”),
five-letter codes that override the LOCODE dictionary (e.g., “jptky”
for “Tokyo, JP” instead of “Tokuyama, JP”), and six-letter codes that
override the CLLI dictionary (e.g., “mancen” for “Manchester, UK”).
We find extensive evidence that operators deviate from these dic-
tionaries: of the 461 regexes that extracted apparent IATA airport
codes, 147 (38.2%) included at least one hint that did not correspond
to an IATA airport code serving the location.

We validate our method using ground truth from network
operators. We received ground truth covering 13 networks of
different classes and scale. The responses show that our inferred
conventions captured the operators’ intent to embed geohints in
router hostnames, with 94.0% of router hostnames correctly in-
terpreted. We validated our inferences of suffix-specific geohints
(e.g., when an operator uses “ash” for “Ashburn, VA”) and received
confirmation that 92 of 117 (78.6%) of our learned geohints were
correct for these 13 networks.

We publicly release the source code implementation and a
website containing the inferred naming conventions. To pro-
mote use of our method, we publicly release our source code [28]
and data [31]. Our website allows researchers to obtain the regexes,
understand how they work, and accelerate the community’s under-
standing of where network operators deploy their infrastructure.

2 GEOLOCATION HINT TYPES

Each operator independently decides what information they store
in their PTR records, including the form of any geohint. Steenbergen
found that the most commonly used types of geohints are IATA
and ICAO airport codes, CLLI codes, and customized abbreviations
related to the city name [50].

IATA codes: This 3-letter airport code is the most common
type of geohint found in router hostnames. The OurAirports data-
base [35] contains 9,150 IATA codes, and annotates 91.9% with the
primary city they serve. Of those, 58.5% contain three characters
of the city name in order, such as “lon” for London, UK or “prg”
for Prague, CZ. The remaining 41.5% do not follow this convention
(e.g., “lax” for “Los Angeles, CA” or “yyz” for Toronto, CA), leading
some operators to create an abbreviation based on the city name in
order to allow others to interpret the location of the router.

ICAO codes: This 4-letter airport code is more structured than
the IATA code, with the first one or two letters representing the con-
tinent or country - e.g., E for airports in Europe and K for airports
in the U.S. ICAO codes are not as human-readable as IATA codes;
equivalent ICAO codes for “lon”, “prg”, and “lax” are “egll”, “Ikpr”,
and “klax”. In contrast to prior work [20, 46], we find no evidence
that operators systematically embed ICAO codes in hostnames.

Learning to Extract Geographic Information from Internet Router Hostnames

LOCODEs: This 5-letter code is structured similarly to the ICAO
code. The first two characters represent the country, and the last
three characters represent a location in that country. Generally,
airports with an IATA code have the IATA code embedded in the
LOCODE - e.g., “gblon”, “uslax”. Not all locations are obviously
decoded; e.g., the LOCODE for Ashburn, VA is “usqas” as shown
in router #3 in figure 1. The UN freely publishes coordinates for
LOCODEs.

CLLI codes: This 11-character code can geolocate telecommu-
nications equipment at the granularity of a building. The first six
characters are a CLLI prefix — the first four characters identify a city
or town, while the next two characters identify a state (in the US or
Canada) or a country. For example, “asbnva” in figure 1 identifies
Ashburn (asbn) in Virginia (va), while “londen” identifies London
(lond) in England (en). Network operators register a CLLI code with
a physical address, including coordinates, with iconectiv, the com-
pany that administers the CLLI database. Some network operators
embed CLLI codes, ranging in length between 6 and 11 characters,
into router hostnames.

City or town names: Operators may embed city or town names
such as “ashburn” and “washington” in figure 1. Unlike the other
codes, city names do not uniquely identify geographic locations. In
our dictionary (§5.1.1) there are 10 locations named Washington
and 2 named Ashburn. Unless the operator embeds a country or
state code, as xo.net does in figure 1, the geohint can be ambiguous.

Facility names: Operators may embed the name or street ad-
dress of the facility where the router is present. For example, they
may embed “equinix” or “529bryant” to indicate that a router is
present at the Equinix colocation facility at “529 Bryant St, Palo
Alto, CA”

Country and state names: Operators may embed just the name
or an abbreviation of a country or state when they have a limited
deployment within a country or state — e.g., “australia” / “aus” or
“queensland” / “qld”.

3 RELATED WORK

Internet researchers extensively use geolocation databases, e.g., to
correlate weather events with Internet outages [41], and understand
the geographic distribution of systems infected by botnets [3, 9] and
DNS manipulation [44]. In 2011, Poese et al. found that although
the commercial databases were generally accurate for end-hosts at
the country-level, their city-level accuracy was lower [45]. The use
of geolocation databases for router geolocation is even more prob-
lematic [15]. The remainder of this section focuses on techniques
relevant to geolocation of routers.

3.1 Delay-based Geolocation

Delay-based geolocation methods (e.g., [11, 12, 17, 18, 23, 42, 54])
use delay measurements from known locations to geolocate a sys-
tem with an unknown location. In 2004, Gueye et al. introduced
the seminal technique for constraint-based geolocation (CBG) of
Internet hosts [17, 18]. Using delay measurements to build distance
constraints from vantage points (VPs) with known locations, the
CBG technique infers the system is located at the centroid of these
distance constraints through multilateration, and provides an error
estimate based on the width of the region in which the system could

442

CoNEXT 21, December 7-10, 2021, Virtual Event, Germany

be. In this work, we use speed of light constraints to infer if a string
in a hostname could represent the location of the system.

In 2006, Katz-Bassett et al. introduced topology-based geoloca-
tion (TBG) of Internet hosts [23]. They used traceroute to infer the
directness of paths from VPs with known locations toward systems
with unknown locations, and infer the location of intermediate
routers and target systems using topological constraints from the
traceroute paths. They also described how using undns rules to
geolocate intermediate routers could reduce the error estimate by
providing location estimates when the inferred network topology
lacks sufficient constraints to geolocate routers. In 2007, Wang et
al. built the Octant technique [54] that also uses the position of
intermediate routers to geolocate end hosts, assisted by undns rules.
In this work, we automatically learn rules and geohints that could
inform TBG.

A recent trend is to use simpler methods because collecting
and analyzing Internet topology is complex. In 2006, Katz-Bassett
noted that a simple Shortest Ping [23] method — where the target
is inferred to be in the same location as the VP with the shortest
round trip time (RTT) to the target — was sufficient, and that the
accuracy and precision of CBG [17, 18] was heavily influenced by
the closest VP. In 2018, Trammell showed the significant element
of luck involved in delay-based geolocation, as the single closest
VP usually provides all of the geolocation benefit in practice [51].
RIPE Atlas’ Single Radius geolocation engine uses this approach to
provide an on-demand geolocation system [11].

3.2 Geolocation with Hostnames

Hostname-based geolocation techniques (e.g., [13, 42, 46, 49]) use
geohints in hostnames to geolocate a system with an unknown
location. In 2002, Spring et al. presented the seminal technique —
the Rocketfuel ISP mapping system [49], and its undns tool. The
undns tool included a manually-assembled database of regexes to
extract information from hostnames, including router geolocation,
router roles (backbone, gateway, customer), router names (strings
that indicate two interfaces belong to the same router), and router
points-of-presence (which routers are at the same location). Due to
the openness of undns, researchers extended the database to support
their research [14, 33, 34, 48, 58]. The database contains regexes
that extract geohints for 241 different suffixes, and a dictionary that
maps geohints to a location name. A significant volume of research
was supported by undns geolocation regexes (e.g., [2, 8, 19, 22, 23,
25,34, 39, 40, 54, 57]). However, constructing the database manually
is time-consuming, the database does not contain lat/longs for the
location names, and the undns regexes have not been updated since
2014.

In 2017, Scheitle et al. introduced the HLOC technique [46].
Rather than derive parsing rules, HLOC uses geolocation dictionar-
ies to identify possible geohints at run time, and delay measure-
ments from RIPE Atlas VPs near those locations to determine if
the geohint is consistent. They included a manually-constructed
dictionary containing 468 text strings to not consider as contain-
ing possible geohints, to limit the number of RIPE Atlas VPs used.
Returning to the examples in figure 1, their dictionary contains
“level”, “atlas”, “vodafone”. Our method learns the structure of host-
names, so that our system will not consider hostname portions that

CoNEXT 21, December 7-10, 2021, Virtual Event, Germany

_____ den - — — — —

ord,us | den1-core-01-ae1.360.net) 1a

21ms | dent-core-01-xe-1-1-0.360.net | 1b
—————— den o — — — — o

ord,us ! den1-core-02-ae1.360.net ! 2a

23ms \den1-core-02-xe:0-1-0.360.net, 2b
_____ [F= " QU

Si’:‘;:s | lax1-edge-01-1-1-1.360.net 3a
_____ S€A - m mm =

se2a, us seal-edge-02-lag1.360. net' 4a
ms N ————————
_____ PAX o - — =

521:5 I pdx2-access-01-1-1-2.360.net | 5a

N[a-z{3))(["a-z]+[a-Z]+[0-9]*{2)\.360\.net$

,—— -

|
denl1a 2a

| True Positives

sea, 48, (TP): 3

'.l;l
o

/\([a—z K3H)\d+-[a-z]+-\d+-[\.]+\.360\.net$

sea:4a: pdx:Sa: TP:7

Figure 2: Comparing regexes inferred for 360.net. DRoP’s
rule extracts relative to the end of the suffix, and does not
emit a sequence to cover sequences of digits, so only matches
a subset of the hostnames.

do not contain geohints. They did not validate that their method
extracted correct hints, just that other methods suggested locations
that violated speed-of-light constraints. Finally, HLOC cannot learn
geohints that operators derive that are not in their input dictionary.

3.3 Learning Geographic Conventions

In 2014, Huffaker et al. published the DRoP technique, which au-
tomatically learned regexes to extract geohints that operators em-
bedded in hostnames for router IP addresses [20]. Their approach
at a high-level is similar to ours; they automatically determine if
an apparent geohint in a hostname is reasonable given topological
and delay constraints from vantage points with known locations,
and if the operator embeds geohints in a consistent position in the
hostname. The method used four key metrics: RTT, RTT variation,
hop count, and hop count variation. Their intuition was that routers
with the same geohint would have a similar RTT and hop count.
They trained a classifier using these metrics with ground truth from
six networks rather than define heuristics that accept or reject a
geohint. They used their method once to build regexes for 1,398
suffixes observed in July 2013. Their approach serves as inspiration
for our work, but it has limitations that we address.

First, their regex building engine was too simplistic - it assumed
that a suffix always placed the geohint at the same position relative
to the end of the hostname. Further, the regexes were not specific,
and only emitted one sequence per rule. Figure 2 illustrates a DRoP
regex for 360.net, which matches only three of seven hostnames
because it expects two segments separated by punctuation. Second,
they only required a majority (>50%) of the extracted hints to be
consistent with training data, which is problematic because their

443

Matthew Luckie, Bradley Huffaker, Alexander Marder, Zachary Bischof, Marianne Fletcher, and k claffy

RTT measurements roughly constrained locations to within a con-
tinent. Third, their method assumed that operators used geohint
databases verbatim, and did not derive new geohints that collided
with an existing geohint (e.g., “ash” in router #4 in figure 1). Fi-
nally, they limited their RTT measurements to those observed in
the traceroutes used to build the ITDK, to avoid the overhead of
launching new probing of these interfaces from other VPs. However,
the VP that observes a router in traceroute is rarely the closest VP
to that router (§5.1.4), so collecting followup RTT measurements
with ping from other VPs can better constrain inference.

Subsequent studies have identified problems with locations in-
ferred using DRoP regexes [6, 10, 46]. In 2015, Cai probed 4,638 dis-
tinct locations that DRoP inferred for router hostnames, and found
46% were outside feasible boundaries imposed by CBG (§3.1) - e.g.,
DRoP built a regex to extract “chi” from crl.chi2ca.sbcglobal.net
and interpreted “chi” to place the router in “Chicago, IL” rather
than “Chico, CA” [6]. In 2017, Scheitle et al. also compared locations
extracted by DRoP against CBG-feasible boundaries and reported
that most DRoP-inferred locations were incorrect [46].

In 2018, Dan et al. described a machine learning algorithm that
provided a sorted list of potential locations for a given hostname [10].
This system relied on a precise but proprietary list of 16 million end-
user hostnames with known locations collected by Microsoft. Their
system first split the hostname into constituent terms, matched
those terms against a geolocation dictionary to generate a feature
set, and then ran the resulting hostname and features against a
binary classifier. Their system differed from DRoP in two signif-
icant ways. First, DRoP focused on router hostnames for which
sizable ground truth is not available. Second, DRoP produced a
set of domain specific rules, while the 2018 study [10] produced
a single trained classifier whose dictionary they assumed applied
to all domains. Because they did not train with or validate against
router hostnames, their method has unknown applicability to router
geolocation.

3.4 Learning Other Naming Conventions

In 2019, Luckie et al. introduced an approach to extract meaningful
structure from router hostnames, which they called hostname or-
thography and embedded in a software module called Hoiho. Their
first goal was to identify hostname substrings common across all
interfaces of the same router — the router name [30]. Their method
evaluates automatically-generated regexes against sets of host-
names for IP addresses that other alias resolution techniques pre-
viously inferred to identify interfaces on the same router. In 2020,
the same authors extended the Hoiho tool to automatically learn
regexes to extract the autonomous system number (ASN) that op-
erates the router [32]. The Hoiho framework provides an ideal
platform to accelerate research on the hostname-based router ge-
olocation challenge, and we leveraged it for our implementation

(§5).

4 CHALLENGES

Our method learns if a network uses a naming convention that
includes a geohint by evaluating automatically-generated candi-
date regexes against a set of training data. Conceptually, we infer
the regex is extracting a geohint if two conditions hold: (1) if the

Learning to Extract Geographic Information from Internet Router Hostnames

_ Router #1: Ashburn, VA, US
1y xe-0-0-0-ash1-bcr1.bb. ebaycom‘1a
cgs, US: xe-0-0-1-ash1-beri.bb.ebay.com | 1b
3ms | xe-0-1-0-ash1-bcr1.bb.ebay.com |1c
| xe-0-3-0-lvs1-bcr2.bb.ebay. com 11d

(a) Stale hostname with an incorrect location strlng (lvs).

— — — Router #2: Eugene, OR, US _ _ _
eug-core-ri.peak.org |2a
eug-core-ri.peak.org 12b

\ Xe-0-0-28-0.a02.snjsca04.us.ce.gin.ntt.net l2c

(b) Hostname identifies the location of the provider’s
router (snjsca, San Jose CA) this router is connected to.

ams, nl y———- Router #3: ?7??, NL _ _ -
10ms CF- him-01.nl.eu.ipv6.network.navice. eu 13a

1
sea, us
9Ims |

(c) Custom abbreviated location hints are lossy (him-nl).

Figure 3: Challenges for methods trying to learn naming
conventions with embedded geohints.

regex extracts a geohint consistent with delay constraints, and (2)
the regex extracts multiple such geohints for routers in different
locations. This inference method is challenging for six key reasons.

1. Operators use different dictionaries and make up their
own geohints. Without a standard set of geohints and single dictio-
nary for interpreting them, network operators are left to choose a
dictionary for their hostnames, and might use multiple dictionaries
across their networks. Geohints also overlap across dictionaries,
preventing the simple combination of location dictionaries into a
single lexicon; e.g., the city name “london” refers to “London, UK”,
but overlaps with the CLLI for “London, Ontario, CA” Operators
also repurpose geohints, such as using the IATA code “ash” to refer
to “Ashburn, VA”, or make up their own geohints. A successful
solution must not only extract a geohint from a hostname, but also
determine the dictionary capable of interpreting the geohint, rec-
ognize when networks use geohints incorrectly, and identify and
interpret custom geohints.

2. We do not have ground truth to train a model. A tradi-
tional machine-learning (ML) approach requires ground truth to
train a model. The model is then able to make a decision when
presented with a new piece of information. We manually labeled
the routers in figure 3 with their city-level locations. However,
operators do not publish the location of each router beyond the
hints they supply in hostnames, or publish the dictionary of names
they use. Instead, we must rely on delay-based constraints to infer
apparent geohints in hostnames.

3. The location expressed in a hostname may not be the
location of the router. Prior work found that 0.5% of hostnames
for a large network had incorrect geohints [55]. First, the hostname
may be stale — it might have been assigned when its corresponding
address was on a different router. For example, hostname 1d in
figure 3a suggests the router is in Las Vegas, NV, while hostnames
la-1c suggest the router is in Ashburn, VA. Note that hostnames 1a-
1c are consistent with an RTT of 3ms from a VP near College Park,
MD, while hostname 1d is not. Second, the geohint might represent
the location of the provider’s router when the address is provided

444

CoNEXT 21, December 7-10, 2021, Virtual Event, Germany

to a neighbor for interconnection. Figure 3b gives an example using
a router operated by Peak Internet in Eugene, OR and connected to
NTT with interface 2c. The hostname for 2c identifies the address
as assigned to a customer edge device connected to NTT’s router
named “r02.snjsca04.us”. Here, the geohint corresponds to the loca-
tion of the provider’s router (San Jose, CA), and not the location of
the customer router (Eugene, OR).

4. Abbreviated geohints are lossy. For instance, an operator
abbreviating “Haarlem, NL” to “hlm” removes more than half of the
letters of the city. This lossy compression leads to ambiguity that
challenges inference methods. For example, router #3 in figure 3c
could also correspond to “Helmond, NL” or “Hilversum, NL”.

5. A hostname may contain a geohint by chance. Because
there are so many 3-letter IATA codes, there is scope for uninten-
tional collisions. For example, “gig” (gigabit ethernet), “eth” (eth-
ernet), “cpe” (customer premises equipment) are frequently used
by operators in router hostnames to indicate these properties, and
they are all also IATA codes.

6. Delay measurements are limited by available vantage
points. As of 2021, RIPE Atlas provides 10K VPs distributed
around the world, with a focus on solving the needs of the op-
erational community that funds RIPE. RIPE Atlas limits probing
according to credits that operators and researchers accrue through
hosting a VP. CAIDA’s Archipelago (Ark) infrastructure provides
~100 VPs also globally distributed around the world, without the
same type of probing restrictions, but with sparser geographic
coverage.

5 OVERVIEW OF METHOD

Our method learns if an operator uses a naming convention that
embeds the router’s geolocation in a hostname, by evaluating auto-
matically generated candidate regexes against sets of router host-
names with the same suffix, e.g., ntt.net. Our method relies on the
use of four data sources to seed and guide a four-stage process of
learning naming conventions in hostnames. The four data sources
are: a dictionary of geohints annotated with lat/long values (§5.1.1);
a list of public DNS suffixes (§5.1.2); a curated corpus of routers and
hostnames of interfaces on those routers (§5.1.3); and RTT measure-
ments we gathered from a collection of globally distributed vantage
points in the Internet (§5.1.4). The five stages of our method are
(figure 4):

(1) assemble and load required input data (§5.1),

(2) identify apparent geohints in hostnames (§5.2),

(3) build and evaluate regexes that extract geohints (§5.3),
(4) learn geohints not in the reference dictionary (§5.4),
(5) select best convention per suffix (§5.5).

We designed and implemented methods for identifying apparent
geohints in hostnames, methods for building and evaluating geolo-
cation regexes, and methods for learning the location of an operator-
specific geohint when the operator deviates from the geolocation
dictionary. Figure 4 shows how we integrated our contributions
into the Hoiho framework (§3.4). This existing open source soft-
ware base served as a platform for our research, and also enabled
us to contribute our new methodology back to the community as
new modules of this software framework.

CoNEXT 21, December 7-10, 2021, Virtual Event, Germany

Matthew Luckie, Bradley Huffaker, Alexander Marder, Zachary Bischof, Marianne Fletcher, and k claffy

GeoNames .
1 Routers ITDK Public Suffix | | Y Delay % Reference LOCODEs Legend:
Hostnames List Constraints Dictionary [OurAirports % New Feature
i Modification
(§5.1.3)§ (§5.1 .2)& (§5.1.4) § (§5.1.1) § CLLI, PeeringDB w
___ \
! 2 852 (85.3) 4 (§5.4) 5§55
* identify apparent generate and Y dictionary o (¥ select best ! Geographic
; = Namin
geolocation hints evaluate regexes refinement convention | . 9
__ Conventions

Holistic Orthography of Internet Hostname Observations (Hoiho)

Figure 4: Overview of method for inferring naming conventions that extract geohints from hostnames.

Aug’20 Mar’21 Nov’20 Mar’21

IPv4 IPv4 IPv6 IPvé
Routers 2.56M 2.57TM 559K 525K
w/ hostnames 1.41M 1.39M 84K 84K
(55.0%) (54.1%) (15.1%) (16.0%)
w/ RTT 2.10M 2.10M 265K 237K
(81.9%) (81.7%) (47.3%) (45.2%)
Vantage Points 106 100 46 39

Table 1: Summary of ITDKs used in this work.

5.1 Stage 1: Assemble Required Input Data

We provide details on each data source and the role it plays in our
method (§5.1.1-§5.1.4) before providing details on each stage of the
method (§5.2-§5.4).

5.1.1 Reference Location Dictionary. We primarily used publicly
available location sources to assemble our dictionary. We obtained
IATA and ICAO airport codes from OurAirports [35], which in-
cluded lat/longs and ISO-3166 country and state codes for 9,150
and 7,588 airports, respectively. We obtained a dictionary of city
and town names from GeoNames [53], and retained 444,338 loca-
tions annotated with population and lat/long values. We obtained
LOCODEs from the UN [52], which defined 111,807 codes as of
December 2020; the UN annotated 87,023 codes with lat/longs, and
we obtained a further 23,159 lat/longs from GeoNames [53]. We
licensed a reference dictionary from iconectiv that maps the first
six letters of a CLLI code (a CLLI prefix) to a city or town name [21];
we annotated these CLLI prefixes with lat/longs by joining the city
or town name with GeoNames [53]. For clarity, a city or town is
the most granular information available in the data we licensed.
Finally, we obtained the name, street address, and lat/longs of 1,608
facilities from PeeringDB [1] with at least three networks present.

5.1.2 Mozilla Public Suffix List. Our method determines hostname
suffixes using the Mozilla public suffix list [36], which lists effective
top-level domains (e.g., .com, .net.au) under which operators can
register their own domain suffixes (cogentco.com, ccnw.net.au).

5.1.3 CAIDA’s Internet Topology Data Kit. We used CAIDA’s Inter-
net Topology Data Kit (ITDK [7]) as our input router-level graphs.
The ITDKSs contain inferred routers, collected by Ark vantage points
during a 14-day measurement window, with hostnames for the
router interfaces. We used four ITDKs: IPv4 ITDKs built in August
2020 and March 2021 with routers inferred using MIDAR [24] and

445

1 T —
; traceroute
20.8 - ping n n
£ N\
206 . .
'45
o8 - 16ms / 68ms _| _
& 0.4
@]
02 -1
traceroute
0 ol el
1ms 10ms 100ms
(a) Minimum RTTSs (b) Number of VP
per router locations with sample

Figure 5: RTT measurements from Ark VPs to the 82.9% of
IPv4 routers responsive to ping in the August 2020 ITDK
demonstrate the value of additional ping measurements in
our geolocation method. The median RTT in these tracer-
outes (68ms) represents a physical area 180x larger (72) than
the median RTT of pings to routers (16ms). 35.8% of routers
were observed by only one VP in traceroutes used to assem-
ble this ITDK. We obtained RTTs from all VPs for 89.4% of
routers that were responsive to ping,.

Mercator [16], and IPv6 ITDKs built in November 2020 and March
2021 with routers inferred using Speedtrap [29]. Table 1 summarizes
the ITDKs; ~55% and ~16% of IPv4 and IPv6 routers, respectively,
have hostnames.

5.1.4 Round Trip Time (RTT) Delay Measurements. We used CAIDA
Ark vantage points to collect RTT measurements for router inter-
faces that were part of the ITDKs. We simultaneously collected
these measurements during the measurement windows for each
ITDK. We probed all routers from all VPs, as we could not know
a priori which VP would observe the smallest RTT. Our goal was
to obtain RTT samples to as many routers as possible, so we used
ICMP echo probes soliciting ICMP echo responses, UDP probes
to unused ports soliciting ICMP port unreachable responses, and
TCP ack probes to port 80 soliciting TCP reset responses. We used
the minimum of three RTT samples from each router/VP pair. To
minimize the impact of our RTT measurements, we only used UDP
or TCP probes if we did not receive a response to our ICMP or
UDP probes. We discarded RTTs collected using TCP probes from
seven VPs because we detected the VP’s access router spoofing
TCP reset packets in response to our probes — the RTTs were 1-2ms

Learning to Extract Geographic Information from Internet Router Hostnames

zayo-ntt.mpr1.lhr15.uk.zip.zayo.com

VN N Vv

ae2.2.edge2.brusselsi.level3.net

CoNEXT 21, December 7-10, 2021, Virtual Event, Germany

ae-8.r02.londen03.uk.bb.gin.ntt.net

} F NN

zayo ntt mpr |hr<eeuk zp ae edge brussels ae r londen<euk bb gin
157ms 0.4ms 4.7ms 1.6ms 0.4ms
(a) apparent geohint: lhr, uk (b) apparent geohints: edge, brussels (c) apparent geohint: londen, uk
[lcy-uk: 2ms] [ams-nl: 5ms] [lcy-uk: 2ms]

ae2.agr03.anhmO01-ca.us.windstream.net
agr anhmca -<—e us csi nwrknjnb mse
129ms 1.4ms 150ms 3.6ms 59ms

(d) apparent geohint: anhmca, us
[san-us: 5ms]

ae

0.csi1.nwrknjnb-mse01-bb-ie1.alter.net

NN\ Voo
bb e

(e) apparent geohint: nwrknj
[mnz-us: 10ms]

be-204-pe03.111eighthave.ny.ibone.comcast.net
111eighthave < ny
0.2ms

(f) apparent geohint: 111eighthave, ny
[ifk-us: 1ms]

be pe

Figure 6: Identifying apparent geohints in hostnames. Our method determines which strings in a hostname are RTT-consistent:
have a measured RTT no smaller than the theoretical best-case RTT from each VP. Our method handles split CLLI prefixes,

and identifies state/country codes that are part of the geohint.

regardless of the distance of the probed router from the VP. Fu-
ture work could automatically filter these responses, by identifying
highly connected components of VPs whose RT T-feasible locations
are consistent, and discarding the remainder. Table 1 summarizes
coverage; ~82% and ~46% of IPv4 and IPv6 routers, respectively,
have RTT samples. We used all available Ark VPs - =103 and ~43
VPs for IPv4 and IPv6 ITDKs, respectively.

Figure 5 summarizes key properties of the RTT dataset for the
August 2020 ITDK. Figure 5a shows that 50% of the responding
routers had a ping-based RTT from the closest VP of <16ms, placing
the router within 1,600km (1,000 miles) of the closest VP. For 50%
of these routers, the minimum RTT in a traceroute response was
68ms, 4.25x larger than the ping-based RTT, which represents a
180x larger physical area (772). Figure 5b shows that 35.8% of the
routers were only observed in traceroutes from one VP, whereas we
obtained RTT samples from nearly all (89.4%) VPs for those routers
responsive to ping using followup RTT measurements. This implies
that a VP observing a router in traceroute (which DRoP used, §3.3)
is rarely the closest VP to that router, and that conducting additional
RTT measurements beyond those captured with traceroute provides
tighter constraints (as we did).

5.2 Stage 2: Identify Apparent Geohints

With the data assembled in §5.1, our method begins by identifying
apparent geohints in router hostnames, by comparing alphabetic
strings prior to the hostname’s suffix with RTT measurements.
For example, for zayo-ntt.mpr1.lhr15.uk.zip.zayo.com in figure 6a,
our method considers “zayo”, “ntt”, “mpr”, “Ihr”, “uk”, and “zip”. Our
method then searches our dictionary for matching entries for the
geohint, considering whether the measured RTTs are consistent
with the location implied by the geohint. For each router-VP pair,
our method calculates the theoretical best-case RTT between the
candidate geohint’s location and the VP’s location according to the
speed of light in a fiber optic cable. If the theoretical best-case RTT
is smaller than the measured RTT for all VPs, then the measured
RTT is RTT-consistent. For example, while “ntt” and “Ihr” are IATA
codes, only “Ihr” is RTT-consistent. Our location dictionary (§5.1.1)
contains ISO-3166 code GB-ENG for “lhr”; because “GB” and “UK”
are equivalent, our method includes “uk” as part of the apparent

446

(a) M+\([a-z{3P)\d+\.([a-z{2})\.[a-zZK8N\.zayo\.com$

(b) A+\.([a-z]+)\d*\.level3\.net$

(c) A+\([a-z{6)\d+\.([a-z{2})\.[a-z2)\.gin\.ntt\.net$

(d) A4\ ([a-zK4)\d+-([a-zK2})\.([a-z{2})\.windstream\.net$
(e) M+\.([a-z]{6})[a-2\d]+-[a-z]+\d+-[A\.]+\.alter\.net$

(f) AMNJH.(\d+[a-z]+)\.([a-z{2})\.[a-z]+\.comcast\.net$

Figure 7: Regexes extracting geohints from the corresponding
hostnames in figure 6.

geohint. Our method tags the hostname with the expected extrac-
tions, so that when evaluating regexes (§5.3), it can penalize a regex
that does not extract an apparent state/country code.

Figure 6b shows a hostname with two apparent geohints with
locations (“Edge, GB” and “Brussels, BE”) that are RT T-consistent.
Our method tags both, and determines which geohint is the actual
location in the next stage.

Figures 6¢c-6e illustrate different ways that operators can embed
(portions of) CLLI codes. Figure 6¢ shows that NTT embeds the first
6 letters of a CLLI code, as well as a country code. Figure 6d shows
that alter.net embeds the first 8 letters of a CLLI code; our method
therefore considers whether the first 6 letters of a longer string
could be a CLLI prefix. Similarly figure 6e shows that Windstream
splits a 6-letter CLLI prefix into its 4- and 2-letter components; our
method also considers whether adjacent 4- and 2-letter components
could be a CLLI prefix.

Finally, figure 6f shows a hostname with a facility street ad-
dress embedded. Our method processes all strings separated with
punctuation within a hostname, identifying apparent geohints by
first comparing each string against street addresses in PeeringDB
facility records; for example, PeeringDB contains “111 8th Ave”.
Our method tags this apparent geohint because the location of the
facility is RTT-consistent.

5.3 Stage 3: Build and Evaluate Regexes

We build on prior work that automatically learned regexes to ex-
tract router names [30] and autonomous system numbers [32] from
hostnames. We extended Hoiho’s regex builder to generate regexes
that extract geohints over the course of four stages, which increase
the specificity and coverage of the regexes as the method proceeds.
Figure 7 shows the final regexes that our method built for the

CoNEXT 21, December 7-10, 2021, Virtual Event, Germany

Matthew Luckie, Bradley Huffaker, Alexander Marder, Zachary Bischof, Marianne Fletcher, and k claffy

VP, RTT Hostname Router

cgs, us 9ms gcr-company.gigabitethernet4-1.core1.ash1.he.net #1

cgs,us3ms 100gei-2.corel.ashi1.he.net #2

cgs,us 3ms 100ge10-1.core2.ash1.he.net #3

cgs, us 5Bms 46-labs-lic.ve401.core2.ash1.he.net #4
Facility Population TP FP PPV
Existing Hint: IATA ash (Nashua, NH, US) - #1 #2, #3, #4 25%
P> Candidate Location: Ashburn, VA, US * 43,511 #1, #2, #3, #4 - 100%
Candidate Location: Ashland, VA, US * 7,503 #1, #2, #3, #4 - 100%
Candidate Location: Ashland, NJ, US 8,202 #1, #2, #3, #4 - 100%

(a) Learning that “ash” corresponds to “Ashburn, VA, US” for he.net. The existing geohint had a PPV of 25%.
“Ashburn, VA, US” has a PPV of 100%, facilities, and the largest population among candidate locations in the set.

VP, RTT Hostname Router
zrh, ch 6ms ae-7.r02.mlanit01.it.bb.gin.ntt.net #1
zrh, ch 6ms ae-3.r21.mlanit02.it.bb.gin.ntt.net #2
Facility Population TP FP PPV
P Candidate Location: Milan, IT > 1,236,837 #1, #2 - 100%
Candidate Location: Montesilvano Marina, IT 45,991 #1, #2 - 100%

(b) Learning that “mlanit, it” corresponds to “Milan, IT” for ntt.net. “mlanit” is an unknown (UNK) CLLI code,
and the actual CLLI code for Milan, IT in the CLLI dictionary is different, i.e. NTT implemented their own.

Figure 8: Learning geohints not in reference dictionary (§5.4). Our method learns when an operator re-purposes an existing
eohint, such as “ash” in (a), and when an operator creates a new geohint, such as “mlanit” in (b).
g P g

hostnames in figure 6; these suffixes contain hundreds of other
hostnames that - in combination with the hostnames in figure 6
- informed the selection of a final regex. Because the approach to
build the regexes is similar to previous work [30, 32], we provide
the details in appendix A, and instead focus on how our method
evaluates regexes, as this informs learning new geohints (§5.4) and
selecting per-suffix regexes (§5.5).

Because of the heterogeneity of hostname structure present
within any given suffix, as well as the many different possible in-
terpretations of a given string within a hostname, our method may
build many hundreds or thousands of candidate regexes. Further,
our method may need to use multiple regexes simultaneously to
capture different geohint formats within a suffix. We define a nam-
ing convention (NC) as one or more regexes that extract geohints for
a given suffix. We developed the following four per-hostname clas-
sifications with the goal of selecting a NC that extracts all available
geolocation information from a hostname, including country or
state codes, which can help our method accurately learn geohints
when present (§5.4).

Our method assigns a true positive (TP) if a regex extracted a
geohint that is plausible given the measured RTTs for the router,
and the regex extracted any state and/or country code that was also
part of the apparent geohint - e.g., if it extracted “lhr, uk” from the
hostname in figure 6a. Our method assigns a false positive (FP) if
a regex extracted a geohint that is not RT T-consistent - e.g., if it
extracted “ntt” from the hostname in figure 6a. Our method assigns
a false negative (FN) if a regex did not extract a geohint when our
method tagged an apparent geohint (§5.2) or did not extract a state
and/or country code from the hostname that was also part of the
apparent geohint — e.g., if it did not extract anything or it extracted
“lhr” from the hostname in figure 6a. Finally, our method assigns
unknown (UNK) if a regex extracted a geohint from the hostname
but the geohint is not in our dictionary - e.g., “ldn, uk”.

447

5.4 Stage 4: Learn Operator Geohints

This stage of our method attempts to learn geohints and their
meaning when operators embed geohints that are either not in
our dictionary, or map to a different location than the location
in our dictionary. Our intuition is that operators generally use
geohints in our dictionary, but may deviate from the dictionary
for readability (§2). That is, (1) the fraction of locations where
the operator uses a geohint of their own is small relative to their
overall geohint dictionary, (2) the NCs our method built using the
reference dictionary serve as a useful starting point to learn per-
suffix geohints, and (3) the geohint is an abbreviation of an existing
city, state, or country name (a place name).

Figure 8 illustrates the approach. Our method begins with all
NCs that identify at least three unique RTT-consistent geohints
with a Positive Predictive Value (PPV = TP / (TP + FP)) > 40%
— these are NCs where our method has confidence the operator
is embedding geohints. Our method then considers the routers
with geohints that (1) are not RTT-consistent (FPs) — as “ash” is
in figure 8a, or (2) are not in the dictionary (UNKs) - as “mlanit”
is in figure 8b. Our method then consults the dictionary, and for
each geohint, considers if the extraction could be an abbreviation
for a place name in the dictionary. Existing work in the natural
language processing (NLP) community (e.g., [38, 43]) describes
methods for automatically learning acronyms and abbreviations
given surrounding text. Using the previous sentence as an example,
those methods determine that “NLP” is an abbreviation for natural
language processing. Because we lack that contextual information
in hostnames, we instead use the following heuristics.

First, our method considers that the extraction could be an ab-
breviation of a place name if all of the characters in the extraction
appear in the place name in order, and if the first character matches
(e.g., “ash” matches “Ashburn, VA”, and “mlan” matches “Milan”). If
the place name consists of multiple words (e.g., “New York”) then

Learning to Extract Geographic Information from Internet Router Hostnames

we also require the first letter of a word to match before matching
other characters in that word (e.g., we allow “nyk” but not “nwk”).
When considering abbreviations for a regex that extracts place
names (e.g., “ftcollins” for “Fort Collins”) our method requires the
abbreviation to match at least four contiguous characters in the
place name.

Second, our method evaluates the RTT hints for the candidate
locations, counting the number of routers RTT-consistent (TP) or
not RTT-consistent (FP) with the location. Our method ranks the
candidate locations, first by those known to have a facility (via
PeeringDB), then by population, then by TPs. Our method chooses
the highest-ranked location, provided that the PPV of that geohint
is at least 80% (because we expect the geohints to be generally
correct), and is better than the existing geohint by more than one
TP (we allow for the fact that an existing geohint might be correct
and the operator has stale hostnames). Our intuition is that the
method should choose locations known to host facilities, breaking
ties using population using the observation by Lakhina et al. that
router deployment is correlated with population density [26]. Fig-
ure 8 shows that our method chooses “Ashburn, VA” over “Ashland,
VA” because it has a larger population.

Finally, if the regex does not extract a country or state code
(figure 8a) our method requires three congruent routers before
inferring a new geohint. If the regex does extract a country or state
code (figure 8b) our method only requires one congruent router
before inferring a new geohint. Our intuition is that the presence of
a country or state code reduces the chance that we are extracting
strings that are not geohints and thus the chance of over-fitting.

5.5 Stage 5: Ranking and Classifying

Our metric for ranking NCs is the number of Absolute True Posi-
tives (ATP = TP - (FP + FN + UNK)). Our goal is to find a NC that
extracts RT T-consistent geohints for as many hostnames as possi-
ble within a suffix, without extracting strings that are not geohints.
Our method chooses a NC from the set of NCs inferred per suffix
by selecting the highest ranked NC, only choosing a lower ranked
NC if it is made up of fewer regexes with nearly the same set of
matches (the lower ranked NC has no more than three TPs fewer).

Our method classifies a NC as good if it extracted at least three
unique location hints consistent with training data with a PPV
>90%, promising if it extracted at least three unique location hints
consistent with training data with a PPV >80%, and poor otherwise.
The good and promising NCs are usable because they usually extract
a geohint consistent with the router’s location.

6 RESULTS

We applied our method to the four ITDKs described in §5.1.3. Ta-
ble 2 shows the coverage of usable NCs inferred by our method
on the ITDK routers. We note that while a lower fraction of IPv6
routers have hostnames, those hostnames are more likely to have an
apparent geohint (§5.2) than IPv4 routers — ~35% (IPv6) compared
to ~16% (IPv4). Our automatically generated usable NCs extracted
geohints from ~85% of the IPv4 routers with apparent geohints, and
~89% of the IPv6 routers with apparent geohints; these represent
~7.4% and ~4.9% of the total number of IPv4 and IPv6 routers in
these ITDKSs, respectively. Table 3 summarizes the classifications

448

CoNEXT 21, December 7-10, 2021, Virtual Event, Germany

Aug’20 Mar’21 Nov’20 Mar’21

Routers IPv4 IPv4 IPve6 IPve6
total 2.56M 2.57TM 559K 525K
with hostname 1.41M 1.39M 84K 84K
(55.0%) (54.1%) (15.1%) (16.0%)
with apparent geohint 225K 220K 29K 31K
(8.8%) (8.5%) (5.3%) (5.8%)
geolocated 195K 183K 26K 27K
(7.6%) (7.1%) (4.7%) (5.2%)

Table 2: Coverage of usable NCs, which each extracted 83.4%
- 89.6% of apparent geohints from hostnames.

Aug’20 Mar 21

Nov ’20 Mar 21

Classification IPv4 IPv4 IPv6 IPvé6
Good 795 777 195 189
(43.6%) (432%) (56.4%) (56.2%)
Promising 111 120 17 16
(6.1%) (6.7%) (4.9%) (4.8%)
Poor 919 903 134 131
(50.4%) (50.2%) (38.7%) (39.0%)
Total 1825 1800 346 336

Table 3: Classification of NCs. Our method built “good” or
“promising” NCs for 906 (49.6%) of the 1825 suffixes with an
apparent geohint using the August 2020 ITDK.

made for the NCs inferred from the ITDKs. Our method inferred
the operator was systematically embedding geohints in their router
hostnames for 49.6% of the 1825 suffixes with an apparent geo-
hint in the August 2020 ITDK, and these NCs extracted 86.8% of
the apparent geohints in that ITDK (table 2). Similarly, while our
method learned usable NCs for 61.3% of suffixes with a geohint
in the November 2020 IPv6 ITDK, these NCs extracted 89.3% of
the apparent geohints in that ITDK. Overall, our method inferred
usable NCs for 1023 different domain suffixes with IPv4 routers
(August 2020 and March 2021), and 241 different domain suffixes
with IPv6 routers (November 2020 and March 2021). These results
demonstrate the potential for our method to generate geolocations
that can serve as anchors for TBG methods (§3.1).

Table 4 summarizes the NCs learned for the August 2020 IPv4
ITDK. Of the 795 NCs our method classified as good, 411 (51.7%)
used an IATA code to identify the city where the router is located,
309 (38.9%) used city names, 96 (12.1%) used CLLI prefixes, 10 (1.3%)
used LOCODEs, and 2 (0.3%) used street addresses of facilities. Of
these NCs, 31 (3.9%) used a mix of geohint types, such as that of
alter.net illustrated in figure 13 in appendix A; because each regex
in a NC extracts a single geohint type, these NCs consist of multiple
regexes. Table 4 shows the fraction of NCs that also embedded a
state and/or country code. Nearly a quarter (23.6%) of good NCs
that embedded an IATA code also embedded a state and/or country
code. Interestingly, 5 of 96 (5.2%) good NCs that embedded a CLLI
prefix also embedded a country or state code; these were mostly
redundant, as CLLI prefixes are mostly used in the US, and US CLLI
prefixes already contain a state. The use of IATA codes was more
dominant for the NCs learned for the November 2020 IPv6 ITDK -
75.9% of good NCs used an IATA code, 16.9% used a city name, 6.2%
used a CLLI prefix, and 2.6% used a LOCODE.

CoNEXT 21, December 7-10, 2021, Virtual Event, Germany

71.7%
63.3%
5.0%
61.7%
60

99.3%
79.8%
0.0%
0.0%
2403

75.6%
47.3%
0.0%
56.5%
131

99.6%
81.1%
0.0%
0.0%
472

93.0%
63.7%
0.0%
0.0%
270

95.5%
82.8%
0.0%
0.0%
1697

Hoiho:
HLOC:
DRoP:
Undns:
Hostnames:

98.5%
77.2%
80.4%
28.4%
2121

Matthew Luckie, Bradley Huffaker, Alexander Marder, Zachary Bischof, Marianne Fletcher, and k claffy

96.7%
717.7%
79.6%
0.0%
766

94.0%
73.1%
56.6%
21.8%
17232

95.5%
68.4%
89.5%
72.1%
3397

84.3%
3.9%
2.0%
7.8%

51

78.7%
55.7%
48.6%
0.0%
479

88.6%
78.9%
60.3%
47.7%
1238

90.3%

68.3%
82.8%
0.0%
4128

94.7%
5.3%
0.0%
0.0%

19

100

80

[o)
(=]

IS
(e

Percentage of
hostnames with
geohints

[\
S

S

aorta
.net

above akamai
.net .com

as8218 geant
.eu .net

att
.net

Hoiho:FP =—=
Hoiho: TP s

he
.net

HLOC:FP ——
HLOC:TP ===

seabone tfbnw All

.net .net

ntt
.net

retn
.net

vrsn
.net

nysernet
.net

zayo
.com

DRoOP:FP mmm
DROP:TP mmm

undns:FP ——
undns: TP ===

Figure 9: Comparing router geolocation inferences from HLOC, DRoP, undns, and our method in Hoiho. We considered router
hostnames that we knew from operator feedback contained geohints. An inference is successful if the method geolocates a
router within 40km of its ground truth location. For all domains, our method in Hoiho had more true positives than HLOC,
DRoP, and undns. The gap between the top of each bar and 100% represents false negatives — geohints a method did not use.

Geohint Annotation Good Promising
IATA - none 314 (39.5%) 47 (42.3%)
- state 8 (1.0%) (0.9%)
- country 89 (11.2%) (1.8%)
- total 411 (51.7%) 50 (45.0%)
City - none 289 (36.4%) 62 (55.9%)
- state 14 (1.8%) 0
- country 4 (0.5%) 1 (0.9%)
- both 2 (0.3%) 0
- total 309 (38.9%) 63 (56.8%)
CLLI prefix - none 91 (11.4%) 0
- state 2 (0.3%) 0
- country 3 (0.4%) 0
- total 96 (12.1%) 0
LOCODE - none 10 (1.3%) 0
Facility - none 1 (0.1%) 0
- state 1 (0.1%) 0
- total 2 (0.3%) 0
Overall 795 111

Table 4: Fraction of NCs that embed a geohint and also embed
a state and/or country code. Operators are more likely to
embed a country or state code when embedding an IATA
hint than a city name or CLLI prefix.

6.1 Learned Naming Conventions

We contacted operators at 19 networks, receiving validation from
13. All 13 responses confirmed that our NCs captured the intent of
the operators to embed geohints in hostnames. We confirmed the
dictionary types and the customized geohints in each suffix (§6.2)
that the network operators used.

In order to evaluate the accuracy of our method, we compared
locations inferred by our method with the validation data provided

449

by these 13 networks. We also used validation data we inferred
for seabone.net, whose operators included city names in Italian
(e.g., “Atene” for “Athens, GR”) alongside their 3-letter geohints
(e.g., “ate”) embedded in hostnames. We also evaluated locations for
each router inferred using the accessible academic state of the art:
HLOC (§3.2, [46]), DRoP (§3.3, [20]), and undns (§3.2, [49]). We are
currently unable to compare with Microsoft’s method (§3.3, [10])
as Microsoft requires a non-disclosure agreement.

This analysis considers the router hostnames that we knew from
operator feedback contained geohints. Figure 9 is a stacked bar chart
with the percentage of true positives on the bottom, false positives
on top, and the gap between the top of the false positives and the
100% line representing the false negatives. As in [20], a geolocation
is considered a true positive if its inferred location is within 40
km of the true location. Our method correctly geolocates more
routers across all domains than HLOC, DRoP, and undns, with
our method correctly geolocating an average of 94.0% of router
hostnames with a geohint compared to DRoP’s average of 56.6%
and HLOC’s average of 73.1%. Our method also yields fewer false
positives than HLOC and DRoP. Of the router hostnames that each
method returned a location for, the PPV of the methods were 98.3%
(undns), 95.6% (Hoiho), 87.2% (DRoP), and 85.1% (HLOC).

The observable false negatives for above.net and aorta.net for
our method in figure 9 are because those operators are inconsistent
in their naming convention and our method did not see enough
samples confidently to learn a pattern. The observable false nega-
tives for DRoP across all suffixes are largely because their published
ruleset is old (2013), and their regexes are simplistic (§3.3, figure 2).
DRoP’s observable false positives are because the method did not
attempt to learn when the operator deviated from the dictionary.
Similarly, the observable false negatives for undns across all suffixes
are because the ruleset was manually constructed, last updated in
2014, and the published ruleset contains a subset of the location
codes used within each suffix. However, because the location codes

Learning to Extract Geographic Information from Internet Router Hostnames

Hint # Location Alternatives
® ash 12 Ashburn, VA, US iad:66
® tor 10 Toronto, ON, CA yyz:19
wde 9 Washington, DC, US was:10
® tok 8 Tokyo, JP nrt:14, hnd:6
zZur 8 Zurich, ZH, CH zrh:30
® Ildn 7 London, GB lon:96

Table 5: Most frequently learned three-letter geohints, with
number of suffixes our method inferred use the geohint. ®
means an airport has that IATA code in our dictionary. We
show the closest IATA codes for that location.

g
:_E — = —
[}
(5]
O
= AL _
Q
£
8 . —]
)
St
o
o AL _
=)
o 0 I N N N B I I I I
0 20 40 60 8 100 O 4 8 12 16
(a) Measured RTT to (b) Distance from airport
closest VP (ms) w/ code (1000s of km)

Figure 10: Properties of learned geohints inferred for ITDK
router nodes in August 2020. 80% were within 22ms of the
closest VP. 50% are at least 7600km from the airport with the
corresponding IATA code.

for each suffix in undns were manually interpreted, nearly all were
correct; in our validation data, only one (kslrml for ntt.net) was
incorrect (mapped to “Kuala Lumpur, MY” not “Kuala Selangor,
MY?).

Finally, HLOC’s observable false positives are because it also
does not attempt to learn when an operator deviates from the dic-
tionary, and it contains confirmation bias. HLOC considers possible
geohints in each hostname, selects Atlas VPs closest to those geo-
hint locations, and then reports if the geohints are RTT-consistent;
it does not use Atlas VPs further away from the possible location
that could determine that the geohint is not RTT-consistent. For
example, a router with “de-cixl.rt.act.fkt.de.retn.net” located in
“Frankfurt am Main, HE, DE” (fkt.de) was considered by HLOC as
possibly located in “Waco, TX, US” or “Chiclayo, PE” because the lo-
cations implied by the “act” and “cix” airport codes were consistent
with the RTTs from the Atlas VPs it used. HLOC’s observable false
negatives are because it does not find a geohint in the hostname,
and because it may not be able to get an RTT sample from the
VP; the clearest example of this is nysernet.net in figure 9, whose
routers can only be probed from R&E networks, but HLOC did not
select a probe in one of these networks.

We investigated how much our learned geohints improved the
performance of our method. If we had not learned geohints, then our
method would have only correctly geolocated 82.4% of hostnames
with a geohint, and the PPV of our method would have been 94.5%.

450

CoNEXT 21, December 7-10, 2021, Virtual Event, Germany

aorta as8218 geant gtt he ntt
3/4 3/3 8/8 12/12 4/4 17/18
(75%) (100%) (100%) (100%) (100%) (94.4%)
retn tfbnw zayo seabone Overall
25/34 2/14 4/4 14/15 92/117
(735%) (143%) (100%) (93.3%) (78.6%)

Table 6: Fraction of learned geohints within each suffix that
we verified. All but seabone.net were verified by operators.
We validated geohints for seabone.net by comparing the geo-
hint with the expanded city name also encoded in each host-
name.

1

e o5
E 0.8 Correct 0.8 %E)
S (YD) 3
3 IC i

= 0.6 Fraction Correct | 0-6 et
> (Y2) 3
T 0.4 —404 £
E Incorrect '§
O 0.2 (YD 402 &
= 0 ! ! ! ! ! ! L1y S

0 10 20 30 40 50 60 70 80

Measured RTT to closest VP (milliseconds)

Figure 11: Properties of 117 learned geohints that we vali-
dated for ITDK router nodes in August 2020. For routers with
RTT to the closest VP <= 7ms, 90% of learned geohints were
correct.

6.2 Learned Geohints

Operators may use a mix of geohints from a dictionary, and their
own custom geohints (§5.4). Of the 461 usable regexes that extracted
apparent 3-letter IATA airport codes for the August 2020 ITDK,
147 (38.2%) included at least one hint that did not correspond to
an IATA airport code serving the location. Table 5 lists six learned
geohints that were shared among at least seven different suffixes,
and the nearest IATA code for each location. Four of these six
learned geohints have a name collision with an IATA code. Three of
the most-frequently learned geohints, “ash”, “tor”, and “tok”, have
nearby airports whose IATA code has no obvious relationship to
the name of city it primarily serves, so the operator motivation to
introduce custom geohints for these locations is clear. However, the
other three learned geohints do have nearby airports with IATA
codes that have clear relationships to the names of the cities they
primarily serve, and the motivation for introducing new geohints
is unclear.

Figure 10a shows the shortest RTT from a VP with a known
location to all learned locations. 48.6% of the learned hints were
within 10ms (1000km) of a VP with a known location, and 80%
were within 22ms (2200km). Figure 10b shows the importance of
learning when an operator uses a custom dictionary, as 93.5% of
the geohints are more than 1000km from the airport with the same
code and 50% are at least 7600km from the airport.

CoNEXT 21, December 7-10, 2021, Virtual Event, Germany

Table 6 summarizes our validation results for these learned geo-
hints. Overall, 92 of 117 (78.6%) of our learned geohints were correct.
The inferred locations are usually correct for network operators
who deploy network infrastructure where there is population den-
sity. The 12 locations for tfbnw (Facebook) that we inferred the
wrong location for are routers located in data centers in small
population areas whose geohints are named irregularly. Their back-
bone network uses traditional IATA codes, and overall we extracted
correct geohints from 90.3% of their router hostnames (figure 9).

Figure 11 shows the distribution of RTTs to the closest VP for
learned geohints that we validated. Learned geohints with smaller
RTTs are more likely to be correct than those with larger RTTs;
for RTTs <= 7ms, 90% were correct, for RTTs <= 11ms, 84% were
correct, and for RTTs <= 16ms, 80% were correct. This implies that
more VPs distributed around the world could lead to higher quality
learned geohints using our method.

7 LIMITATIONS

Stale Hostnames: Zhang et al. established in 2006 that stale host-
names can distort the accuracy of geolocation inferences using
those hostnames, and presented approaches to automatically detect
and mitigate stale hostnames with incorrect geohints [55].

Complex Hostname Encodings: Our method currently builds
regexes that extract geohints delimited by punctuation or digits
in hostnames, but operators do not always delimit geohints with
punctuation or digits. AT&T (figure 12a) embeds five-character
geohints that contain a US state code in the last two characters.
The first three characters contain an identifier for a city, sometimes
expressed with a digit - e.g., rd3 for Richardson, TX - and usually
not using an IATA airport code. These identifiers are challenging
to interpret, even for a human. Similarly, Open Transit (figure 12b)
embeds three-letter location codes, sometimes not using an IATA
airport code - e.g., ash, loa, and nyk - followed by a string that iden-
tifies the role of the router (cr / tr). Without ground truth locations
to train with, it is difficult to automatically infer a convention in
the absence of punctuation that structures a geohint. For example,
a human might recognize that the router with hostname francet-
elecom.lon01.atlas.cogentco.com is operated by France Telecom, and
that its interconnecting router is in London, UK. But delay con-
straints available to an algorithm might suggest that the substring
“fra” or “fran” could refer to “Frankfurt am main, HE, DE”, or that
the operator encoded “France” as a country-level geohint.

Current research in entity extraction using regexes within the
machine learning community relies on a human in the loop (e.g., [4,
5,27, 37, 47, 56]). Nevertheless, a fully automated holistic approach
that first determines francetelecom refers to the operator of the
router could allow an automated geolocation method to not consider
that portion of a hostname as a possible geohint.

8 CONCLUSION

The formidable challenge of Internet router geolocation has limited
progress on a wide range of research and operational pursuits for
decades. Leveraging recent developments in automated learning of
regexes that extract features from IP hostnames, we designed and
implemented a method that automatically learns regexes for extract-
ing geohints from hostnames, even when operators deviate from

451

Matthew Luckie, Bradley Huffaker, Alexander Marder, Zachary Bischof, Marianne Fletcher, and k claffy

VP RTT Hostname
atl,us 7ms atnga00002cce9-irb-2.infra.cdn.att.net
ord,us 9ms bcvoh00002cce9-irb-2.infra.cdn.att.net
dal,us 5ms dlltx00001cce9-irb-2.infra.cdn.att.net
ifk, us ims nycny00002cce9-irb-2.infra.cdn.att.net
dal,us 4ms rd3tx00001cce9-ae120-100.infra.cdn.att.net
sjc,us 4ms scaca00002cce9-ae120-200.infra.cdn.att.net

Dictionary: atnga: Atlanta, GA
bcvoh: Brecksville, OH

nycny: New York City, NY
rd3tx: Richardson, TX

dlitx: Dallas, TX scaca: Sacramento, CA
(a) AT&T
VP RTT Hostname

ams,nl 4ms hundredgige0-0-0-0.amscr6.-.opentransit.net
bwi,us 4ms hundredgige0-3-0-2.ashtr2.-.opentransit.net
san,us 4ms hundredgige0-5-0-1.loatr1.-.opentransit.net
lcy, uk 2ms hundredgige0-0-0-2.lontr5.-.opentransit.net
ory,fr ~ 2ms hundredgige0-0-0-1.partr2.-.opentransit.net
bdl,us 6ms hundredgige0-4-0-3.nyktr2.-.opentransit.net

Dictionary: ams: Amsterdam, NL lon: London, UK
ash: Ashburn, VA, US par: Paris, FR
loa: Los Angeles, CA, US nyk: New York, NY, US

(b) France Telecom Open Transit

Figure 12: Not all operators use a geolocation convention
that is easily parsed with a regex due to the use of custom
geohints that are not delimited with punctuation.

common dictionaries or create their own geohints. We contributed
our results back to the community via open source software [28]
and a public web site of inferred regexes and geohints [31]. The per-
suffix web pages we created served as a conduit to facilitate ground
truth validation from operators, who could easily verify or correct
our inferences. We are also aware of colleagues now relying on our
web site to more accurately characterize the Internet’s router-level
structure using information encoded in hostnames [59].

Our results represent significant advances, but there is still room
for improvement, and several promising next steps. One future
direction could explore introducing traceroute-observed topology
constraints, in addition to RTT constraints, to further refine our
inferred conventions. Further developments in holistic orthography
of Internet hostnames may allow a future method to automatically
reason that a substring in a hostname is used for a specific pur-
pose, such as identifying the role or operator of a router, and not
consider the substring as a geohint. But perhaps the most promis-
ing next step is to synthesize this new capability with tools that
perform IP address alias resolution and router-level inter-domain
topology mapping, allowing one to progressively improve coverage
and fidelity of annotated router-level maps of Internet topology.

9 ACKNOWLEDGMENTS

We thank Young Hyun for assistance with the ITDK, our shepherd
Gareth Tyson, and the anonymous reviewers for their feedback.
This work is partly supported by U.S. NSF awards CNS-2105393,
1925729, 1901517, and OAC-1724853, and the U.S. DoD Defense
Advanced Research Projects Agency under CA-HR00112020014.
It does not necessarily reflect the position or the policy of the
Government, and no official endorsement should be inferred.

Learning to Extract Geographic Information from Internet Router Hostnames

REFERENCES

(1]
(2]

[11]

[12

[13]

[14

[15]

[16

[17]

=
&

[19]

[20

[21]

[22

[23]

[24

[25]

[26

[27]

[28

[29

[30

[n.d.]. PeeringDB. https://www.peeringdb.com/

Ashok Anand, Archit Gupta, Aditya Akella, Srinivasan Seshan, and Scott Shenker.
2008. Packet Caches on Routers: The Implications of Universal Redundant Traffic
Elimination. In SIGCOMM. 219-230.

Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie Bursztein,
Jaime Cochran, Zakir Durumeric, J. Alex Halderman, Luca Invernizzi, Michalis
Kallitsis, Deepak Kumar, Chaz Lever, Zane Ma, Joshua Mason, Damian Menscher,
Chad Seaman, Nick Sullivan, Kurt Thomas, and Yi Zhou. 2017. Understanding
the Mirai Botnet. In USENIX Security Symposium.

Rohit Babbar and Nidhi Singh. 2010. Clustering Based Approach to Learning
Regular Expressions over Large Alphabet for Noisy Unstructured Text. In AND.
43-50.

Alberto Bartoli, Andrea De Lorenzo, Eric Medvet, and Fabiano Tarlao. 2016. Infer-
ence of Regular Expressions for Text Extraction from Examples. IEEE Transactions
on Knowledge and Data Engineering 28, 5 (May 2016), 1217-1230.

Guan Yan Cai. 2015. IP infrastructure geolocation. Master’s thesis. Naval Post-
graduate School.

CAIDA. 2021. Macroscopic Internet Topology Data Kit (ITDK). https://www.
caida.org/data/internet-topology-data-Kkit/.

Nicole Lee Caruso. 2011. A Distributed System For Large-Scale Geolocalization Of
Internet Hosts. Master’s thesis. Cornell University.

Alberto Dainotti, Alistair King, Kimberly Claffy, Ferdinando Papale, and Antonio
Pescapé. 2015. Analysis of a “/0” Stealth Scan from a Botnet. IEEE Transactions
on Networking 23, 2 (April 2015), 341-354.

Ovidiu Dan, Vaibhav Parikh, and Brian D. Davison. 2018. IP Geolocation through
Reverse DNS. Technical Report. https://arxiv.org/pdf/1811.04288.pdf.

Ben Du, Massimo Candela, Bradley Huffaker, Alex C. Snoeren, and ke claffy. 2020.
RIPE IPmap Active Geolocation: Mechanism and Performance Evaluation. ACM
SIGCOMM Computer Communication Review 50, 2 (April 2020), 4-10.

Brian Eriksson, Paul Barford, Bruce Maggs, and Robert Nowak. 2012. Posit:
a Lightweight Approach for IP Geolocation. ACM SIGMETRICS Performance
Evaluation Review 40, 2 (Oct. 2012), 2—-11.

Andrew D. Ferguson, Jordan Place, and Rodrigo Fonseca. 2013. Growth Analysis
of a Large ISP. In IMC. 347-352.

Michael J. Freedman, Mythili Vutukuru, Nick Feamster, and Hari Balakrishnan.
2005. Geographic locality of IP prefixes. In IMC.

Manaf Gharaibeh, Anant Shah, Bradley Huffaker, Han Zhang, Roya Ensafi, and
Christos Papadopoulos. 2017. A Look at Router Geolocation in Public and
Commercial Databases. In IMC. 463-469.

Ramesh Govindan and Hongsuda Tangmunarunkit. 2000. Heuristics for Internet
Map Discovery. In INFOCOM. 1371-1380.

Bamba Gueye, Artur Ziviani, Mark Crovella, and Serge Fdida. 2004. Constraint-
Based Geolocation of Internet Hosts. In IMC.

Bamba Gueye, Artur Ziviani, Mark Crovella, and Serge Fdida. 2006. Constraint-
Based Geolocation of Internet Hosts. IEEE/ACM Transactions on Networking 14,
6 (Dec. 2006), 1219-1232.

Cheng Huang, Angela Wang, Jin Li, and Keith W. Ross. 2008. Measuring and
Evaluating Large-Scale CDNs. In IMC.

Bradley Huffaker, Marina Fomenkov, and kc claffy. 2014. DRoP: DNS-based
Router Positioning. CCR 44, 3 (July 2014), 6-13.

iconectiv. 2020. http://store.commonlanguage.com/Codes/CLLI-Code-Online.
html.

Josh Karlin, Stephanie Forrest, and Jennifer Rexford. 2009. Nation-State Routing:
Censorship, Wiretapping, and BGP. Technical Report. https://arxiv.org/pdf/0903.
3218 pdf.

Ethan Katz-Bassett, John P. John, Arvind Krishnamurthy, David Wetherall,
Thomas Anderson, and Yatin Chawathe. 2006. Towards IP Geolocation Using
Delay and Topology Measurements. In IMC. 71-84.

Ken Keys, Young Hyun, Matthew Luckie, and k claffy. 2013. Internet-Scale IPv4
Alias Resolution with MIDAR. IEEE/ACM Transactions on Networking 21, 2 (April
2013), 383-399.

Yohei Kuga, Kenjiro Cho, and Osamu Nakamura. 2008. On inferring regional AS
topologies. In AINTEC. 9-16.

Anukool Lakhina, John W. Byers, Mark Crovella, and Ibrahim Matta. 2003. On
the Geographic Location of Internet Resources. IEEE JSAC 21, 6 (Aug. 2003),
934-948.

Yunyao Li, Rajasekar Krishnamurthy, Sriram Raghavan, Shivakumar
Vaithyanathan, and H. V. Jagadish. 2008. Regular Expression Learning
for Information Extraction. In EMNLP. 21-30.

Matthew Luckie. 2010. Scamper: a Scalable and Extensible Packet Prober for
Active Measurement of the Internet. In IMC. 239-245.

Matthew Luckie, Robert Beverly, William Brinkmeyer, and k claffy. 2013. Speed-
trap: Internet-scale IPv6 Alias Resolution. In IMC. 119-126.

Matthew Luckie, Bradley Huffaker, and k claffy. 2019. Learning Regexes to Extract
Router Names from Hostnames. In IMC. 337-350.

452

CoNEXT 21, December 7-10, 2021, Virtual Event, Germany

(31

Matthew Luckie, Bradley Huffaker, Alexander Marder, Zachary Bischof, Mar-

ianne Fletcher, and k claffy. 2021. Data supplement for “Learning to Extract

Geographic Information from Internet Router Hostnames”. https://www.caida.

org/publications/papers/2021/hoiho/.

Matthew Luckie, Alexander Marder, Marianne Fletcher, Bradley Huffaker, and k

claffy. 2020. Learning to Extract and Use ASNs in Hostnames. In IMC.

Harsha V. Madhyastha, Tomas Isdal, Michael Piatek, Colin Dixon, Thomas An-

derson, Aravind Krishnamurthy, and Arun Venkataramani. 2006. iPlane: An

information plane for distributed services. In OSDIL

[34] Ratul Mahajan, Ming Zhang, Lindsey Poole, and Vivek Pai. 2008. Uncovering
Performance Differences among Backbone ISPs with Netdiff. In NSDI. 205-218.

[35] David Megginson. 2021. OurAirports. https://ourairports.com/.

[36] Mozilla Foundation. 2020. Public Suffix List. https://publicsuffix.org/list/.

[37] Karin Murthy, Deepak P., and Prasad M. Deshpande. 2012. Improving Recall of
Regular Expressions for Information Extraction. In WISE. 455-467.

[38] David Nadeau and Peter D. Turney. 2005. A Supervised Learning Approach to

Acronym Identification. LNAI 3501 (2005), 319-329.

Abdullah Yasin Nur and Mehmet Engin Tozal. 2018. Cross-AS (X-AS) Internet

topology mapping. Computer Networks 132 (Feb. 2018), 53-67.

Abdullah Yasin Nur and Mehmet Engin Tozal. 2018. Geography and Routing

in the Internet. ACM Trans. Spatial Algorithms Syst. 4, 4, Article 11 (Sept. 2018),

16 pages.

[41] Ramakrishna Padmanabhan, Aaron Schulman, Dave Levin, and Neil Spring. 2019.

Residential Links Under the Weather. In SIGCOMM. 145-158.

Venkata N. Padmanabhan and Lakshminarayanan Subramanian. 2001. An Inves-

tigation of Geographic Mapping Techniques for Internet Hosts. In SIGCOMM.

173-185.

Youngja Park and Roy J. Byrd. 2001. Hybrid Text Mining for Finding Abbreviations

and their Definitions. In EMNLP.

[44] Paul Pearce, Ben Jones, Frank Li, Roya Ensafi, Nick Feamster, Nick Weaver, and
Vern Paxson. 2017. Global Measurement of DNS Manipulation. In USENIX Security
Symposium.

[45] Ingmar Poese, Steve Uhlig, Mohamed Ali Kaafar, Benoit Donnet, and Bamba

Gueye. 2011. IP Geolocation Databases: Unreliable? ACM SIGCOMM CCR 41, 2

(April 2011), 53-56.

Quirin Scheitle, Oliver Gasser, Patrick Sattler, and Georg Carle. 2017. HLOC:

Hints-Based Geolocation Leveraging Multiple Measurement Frameworks. In

TMA.

[47] Stanley Simoes, Deepak P, Manu Sairamesh, Deepak Khemani, and Sameep
Mehta. 2018. Content and Context: Two-pronged Bootstrapped Learning for
Regex-formatted Entity Extraction. In AAAL 5924-5931.

[48] Neil Spring. 2012. Grounding undns. Technical Report.

[49] Neil Spring, Ratul Mahajan, and David Wetherall. 2002. Measuring ISP topologies

with Rocketfuel. In SIGCOMM. 133-145.

Richard A. Steenbergen. 2014. A Practical Guide to (Correctly) Troubleshooting

with Traceroute. https://archive.nanog.org/sites/default/files/traceroute-2014.

pdf.

[51] Brian Trammell and Mirja Kithlewind. 2018. Revisiting the Privacy Implications
of Two-Way Internet Latency Data. In PAM. 73-84.

[52] UNECE. 2020. UN/LOCODE Code List by Country and Territory. https:
//unece.org/trade/cefact/unlocode- code-list-country-and-territory.

[53] Marc Wick. 2021. GeoNames. https://www.geonames.org/.

[54] Bernard Wong, Ivan Stoyanov, and Emin Giin Sirer. 2007. Octant: A Comprehen-
sive Framework for the Geolocalization of Internet Hosts. In NSDIL

[55] Ming Zhang, Yaoping Ruan, Vivek Pai, and Jennifer Rexford. 2006. How DNS
Misnaming Distorts Internet Topology Mapping. In USENIX ATC. 34-39.

[56] Shanshan Zhang, Lihong He, Eduard C. Dragut, and Slobodan Vucetic. 2019. How
to Invest my Time: Lessons from Human-in-the-Loop Entity Extraction. In KDD.
2305-2313.

[57] Ying Zhang, Z. Morley Mao, and Ming Zhang. 2008. Effective Diagnosis of
Routing Disruptions from End Systems. In NSDI 219-232.

[58] Ying Zhang, Zhuoging Morley Mao, and Ming Zhang. 2009. Detecting traffic

differentiation in backbone ISPs with NetPolice. In IMC.

Zesen Zhang, Alexander Marder, Ricky Mok, Bradley Huffaker, Matthew Luckie,

ke claffy, and Aaron Schulman. 2021. Inferring Regional Access Network Topolo-

gies: Methods and Applications. In IMC.

™
S

@
&

@
20,

~
=

=
i)

™~
A

=
&

o
=

o
20,

A GENERATING GEO REGEXES

Generate Base Regexes: The first phase builds base regexes that
extract geohints, focusing on structure encoded in the hostname
with punctuation. This phase captures apparent geohints using
regex components that match alphabetic characters, expressed with
[a-z] and a modifier that either matches a specific number of char-
acters, or a sequence of 1+ characters. Our method uses ([a-z]{2})

https://www.peeringdb.com/
https://www.caida.org/data/internet-topology-data-kit/
https://www.caida.org/data/internet-topology-data-kit/
https://arxiv.org/pdf/1811.04288.pdf
http://store.commonlanguage.com/Codes/CLLI-Code-Online.html
http://store.commonlanguage.com/Codes/CLLI-Code-Online.html
https://arxiv.org/pdf/0903.3218.pdf
https://arxiv.org/pdf/0903.3218.pdf
https://www.caida.org/publications/papers/2021/hoiho/
https://www.caida.org/publications/papers/2021/hoiho/
https://ourairports.com/
https://publicsuffix.org/list/
https://archive.nanog.org/sites/default/files/traceroute-2014.pdf
https://archive.nanog.org/sites/default/files/traceroute-2014.pdf
https://unece.org/trade/cefact/unlocode-code-list-country-and-territory
https://unece.org/trade/cefact/unlocode-code-list-country-and-territory
https://www.geonames.org/

CoNEXT 21, December 7-10, 2021, Virtual Event, Germany

VP+RTT Hostname (PTR record)
sjc,us: 4ms 0.xe-10-0-0.gw1.sfo16.alter.net (a)
jfk,us: 1ms 0.xe-0-0-0.il1.nyc41.alter.net (b)
nrt,jp: 3ms 0.s0-0-1-3.xt1.tko2.alter.net (c)

dca,us: 5ms 0.ae1.br2.iad8.alter.net (d)
sea,us: 4ms 0.ael1.gw3.sea7.alter.net (e)
ams,nl: 2ms 0.ae1l.br2.ams3.alter.net (f)

Matthew Luckie, Bradley Huffaker, Alexander Marder, Zachary Bischof, Marianne Fletcher, and k claffy

Phase 1: Generate Base Regexes

#1 D A4\ ([a-zK{3})\d+\.alter\.net$

#2 O NMNIANIA ([a-z{B)[A-]+.+\ alter.net$
#3 Yo AN ([a-z]+)\d+\.([a-zK2)\.alter\.net$
#4 D AT\ ([a-z]+)\. ([a-z{2)\.alter\.net$

Phase 2: Merge Regexes
#5 el MM+ ([a-z]+)\d*\.([a-z{2})\.alter\.net$

Phase 3: Embed Character Classes

#6 O MNd+\[a-z[\d+\ ([a-z[{6})[a-2\d]+.+\.alter\.nets CLLI

Phase 4: Build Regex Sets
> ~+\([a-zK3})\d+\alter\.net$

Vel AA\J+\([a-z]+)\d*\.([a-zK2})\.alter\.net$

#7

VP+RTT Hostname (PTR record)
dca,us: 8ms 0.af0.rcmdva83-mse01-aa-iel.alter.net (g)
mnz,us: 10ms 0.csi1.nwrknjnb-mse01-bb-ie1.alter.net (h)
fdh,de: 16ms dis-00008.munich2.de.alter.net (i)
ams,nl: 12ms dis-00019.stuttgart2.de.alter.net (j)
ams,nl: 17ms ckh.dresden.de.alter.net (k)
ams,nl: 11ms disy-2.frankfurt.de.alter.net (1)

PLAN TP FP FN UNK ATP PPV
IATA ab,def ¢ g,h,i,j,k -1 83%
CLLI g;h a,b,d,e fi,j,k -6 100%

City, CC ij a,b,d,e,f,g,h,k -6 100%

City, CC k a,b,defghij | -9 50%

City, CC ijk ab,defgh | -5 75%

gh a,b,d.ef,ijk -6 100%

IATA bdei
. a,nb,q,e, o
City, CC G hijk | 8 83%

O Nd+\[a-z]1\d+\ ([a-zK6))[a-2\d]+-.+\.alter\.net$ CLLI

Figure 13: Inferring a naming convention (NC) that extracts geohints from alter.net router hostnames across four phases
according to training data. The regexes that form the NC increase in specificity and coverage through each phase. We annotate
each regex with a symbol to identify an evolving regex as our method refines it. §5.3 describes the evaluation metrics. Appendix A

describes the four phases.

to extract country codes, ([a-z]{3}) to extract IATA codes, ([a-z]{4})
to extract ICAO codes, ([a-z]{5}) to extract LOCODES, ([a-z]{6}) to
extract CLLI prefixes, and ([a-z]+) to extract city names. For other
parts of the hostname surrounding the geohint, this phase uses
regex components that exclude specific punctuation (e.g., [*\.]+ and
[*-]+ match sequences of characters that do not contain a dot or
hyphen, respectively) or match anything (i.e., .+) at most once per
regex, using the approach from prior work [30, 32]. For example,
for hostname (a) in figure 13, this phase builds ([a-z]{3})\d+ (regex
#1) to extract “sfo” from “sfo16”, and builds combinations of regex
components that exclude specific punctuation for the remainder
of the hostname — e.g., *.+\.([a-z]{3})\d+\.alter\.net$. Our method
annotates each regex with a plan to decode the geohint that a regex
extracts — for example, regex #3 in figure 13 extracts a city name
and country code.

Merge Regexes: The second phase merges regexes that are
similar - they differ by a single simple string - in order to increase
coverage. We extended Hoiho to consider the case when two regexes
only differ because one regex contains \d+ while the other regex
does not. This phase merges regex #3 (which matches hostnames
iand j) and regex #4 (which matches hostnames k and 1) to build
regex #5 in figure 13 - replacing \d+ (sequence of 1 or more digits)
with \d* (an optional sequence of digits) — which increases coverage
by matching hostnames i, j, k, and L.

Embed Character Classes: The third phase identifies charac-
ter class sequences in common for matched hostnames, replacing
the components that exclude specific punctuation built in phase
one (e.g., [*\.]+ and [*-]+) with components that specify character

453

classes. For example, the first component [*\.]+ for regex #2 in
figure 13 matches only digits, while the second component matches
a sequence of alphabetic characters followed by a digit. Therefore,
this phase replaces the first component with \d+, and the second
component with [a-z]+\d+ to build regex #6. We also extended
Hoiho to consider when operators use fixed-width strings outside
of the captured geohints - for example, for NTT’s regex in figure 7,
we extended Hoiho to use [a-z]{2} to match “bb” (shown in figure 6c¢),
as well as “ce” and “ra” strings which also appear in place of “bb”
(not illustrated).

Build Regex Sets: The final phase builds sets of regexes to form
a naming convention (NC) in order to increase coverage when the
operator uses multiple formats, which often occurs when the opera-
tor uses different geohint types, using the per-hostname evaluation
metrics (TP, FP, FN, UNK) defined in §5.3. This phase ranks regexes
by the descending number of Absolute True Positives (ATP = TP
- (FP + FN + UNK)), and evaluates the outcome of combining a
regex with each of the regexes below it in the rank order, iterating
this step until it has not built a new NC. This phase includes an
expanded regex in its working set if the ATP is greater than the
ATP of the regex it started with, each regex in the expanded NC
extracts at least three unique geohints, and the Positive Predictive
Value (PPV = TP / (TP + FP)) is no worse than 10% lower than the
PPV of the NC this phase started with. For example, in the first
iteration, this phase merges regexes #1 and #5 to form a NC that
extracts IATA airport codes and city names from hostnames; in the
next iteration, it merges #6 into the NC to form NC #7.

	Abstract
	1 Introduction
	2 Geolocation Hint Types
	3 Related Work
	3.1 Delay-based Geolocation
	3.2 Geolocation with Hostnames
	3.3 Learning Geographic Conventions
	3.4 Learning Other Naming Conventions

	4 Challenges
	5 Overview of Method
	5.1 Stage 1: Assemble Required Input Data
	5.2 Stage 2: Identify Apparent Geohints
	5.3 Stage 3: Build and Evaluate Regexes
	5.4 Stage 4: Learn Operator Geohints
	5.5 Stage 5: Ranking and Classifying

	6 Results
	6.1 Learned Naming Conventions
	6.2 Learned Geohints

	7 Limitations
	8 Conclusion
	9 Acknowledgments
	References
	A Generating Geo Regexes

